一阶微分方程有哪些解法
2026-01-14
一阶线性微分方程解法: dy/dx+P(x)y=Q(x),先令Q(x)=0则dy/dx+P(x)y=0,解得y=Ce-∫P(x)dx,再令y=ue-∫P(x)dx代入原方程,解得u=∫Q(x)e∫P(x)dxdx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dxdx+C],即y=Ce-∫P(x)dx+e-∫P(x)dx,∫Q(x)e∫P(x)dxdx为一阶线性微分方程的通解。...
2026-01-14
一阶线性微分方程解法: dy/dx+P(x)y=Q(x),先令Q(x)=0则dy/dx+P(x)y=0,解得y=Ce-∫P(x)dx,再令y=ue-∫P(x)dx代入原方程,解得u=∫Q(x)e∫P(x)dxdx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dxdx+C],即y=Ce-∫P(x)dx+e-∫P(x)dx,∫Q(x)e∫P(x)dxdx为一阶线性微分方程的通解。...