保函网

什么是韦达定理

发布时间:2025-09-02 | 来源:互联网转载和整理

韦达定理(又叫一元二次方程的根与系数的关系,简称根系关系.)指出,一元二次方程的两根的和等于它的一次项系数除以二次项系数所得的商的相反数;两根的积等于它的常数项除以二次项系数所得的商.

假设一元二次方程ax²+bx+C=0(a不等于0),方程的两根x1,x2和方程的系数a、b、c就满足:x1+x2=-b/a,x1x2=c/a。

如果两数α和β满足如下关系:α+β=-b/a,α·β=c/a,那么这两个数α和β是方程ax²+bx+C=0的根。通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。

达定理的历史

1、法国数学家韦达(FrançoisViète,1540-1603)在1615年出版的《方程的理解与修正》中给出一系列根与系数关系的定理,其中第一个定理是关于一元二次方程的。

在韦达生活的时代,西方人还没有接受负数的概念,韦达所说的根与系数关系只适用于有两个不相等正根的一元二次方程,因此韦达所发现的根与系数关系与我们今天所说的韦达定理相去甚远,但韦达是历史上第一个以定理的形式讨论方程根与系数关系的数学家。

2、荷兰数学家吉拉尔(A.Girard,1595-1632)在1629年出版《代数新发明》一书,书中讨论了一般次方程根与系数的关系,他认为方程的根也可以是负数和虚数,并提出:一个n次方程应该有n个根,这就是后人所说的代数基本定理。

3、瑞士大数学家欧拉(LeonhardEuler,1707-1783)在代数基础》中首次给出了一元二次方程根与系数关系的严格证明。

4、苏格兰数学家华里斯(W.Wallace,1768-1843)在为《大英百科全书》所写的“代数学”词条中,在欧拉基础上,补充了韦达定理在推导求根公式时的应用。

韦达

上一篇:关于名胜古迹作文500字精选

下一篇:qq爱情宣言个性签名

其他文章

  • 七夕节发朋友圈的句子
  • 哔哩哔哩的正式会员怎么弄的那个答题又是怎么回事
  • 潘祥林(关于潘祥林简述)
  • 抖音动漫名字如何取
  • 一分钟能写几个字 一分钟能做什么事情
  • 什么是剑冢
  • 管理会计师的考试科目是什么
  • 深圳交警电话
  • 檀香木值钱吗
  • 氨水水解方程式
  • 关于秋的结尾抒情句子
  • 怎么穿手串
  • 厚的读音是什么
  • “负笈远游”是什么意思
  • 英语一般将来时的语法
  • batchno.是什么意思
  • 论文的字体格式及排版要求
  • 银川职教中心的简介
  • 猫和老鼠英文观后感
  • 英国的公主礼仪